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SUMMARY 

A finite-difference method is described for the numerical integration of the one-dimensional shallow 
water equations over a sloping shelf that allows for a continuously moving shoreline. An application of 
the technique is made to the propagation of non-breaking waves towards the shoreline. The results of 
the computation are compared with an evaluation based upon an exact analytical treatment of the 
non-linear equations. Excellent agreement is found for both tsunami and tidal scale oscillations. 
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1. INTRODUCTION 

Models of fluid systems based on the shallow water equations are widely used in oceanog- 
raphy. In the coastal environment, there exist well-documented studies of tides, surges, 
tsunami propagation and wave run-up on beaches. One particular problem often faced by 
the numerical modeller in this area is that of treating a moving shoreline. Various ad hoc 
methods have been used by different investigators. Among these, we may mention Flather 
and Heaps' in an investigation of tides, and Johns2 and Johns and Jefferson3 in a study of 
surface wave propagation through the surf zone. On the tidal scale, the usual practice has 
been to allow the shoreline to advance discontinuously from one grid-point to the next 
subject to some suitable criterion. The procedure used by the present author in the surf zone 
calculations depends on the shoreline displacement being limited to about one grid- 
increment in the finite-difference discretization of the problem. Clearly, this may impose a 
severe restriction on the application of the method. 

Other numerical treatments of the moving shoreline problem have been given by Sielecki 
and Wurtele," who pioneered a method of integrating the shallow water equations with 
sloping boundaries. In a storm surge context, Reid and Bodine' have also described a 
finite-difference method of treating a moving shoreline which is advanced discontinuously 
from one fixed grid point to the next. Jamet and Bonnerot6 have given a finite element 
method in both space and time which incorporates a continuously deforming spatial grid. 
Lynch and Gray7 have described a finite element method for flow in a deforming region 
governed by the shallow water equations. This latter method is particularly attractive 
because it allows for the continuous movement of the shoreline. 

In the present paper, we describe a simple finite-difference procedure that admits the 
treatment of a continuously moving shoreline. The method is a development of a scheme 
originally used by Johns et al.' for representing a fixed curvilinear boundary in a storm surge 
model; this was subsequently generalized by Johns et aL9 to the case of a moving shoreline. 
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The purpose here is to demonstrate the efficacy of the method by simulating standing waves 
over a sloping shelf and comparing the numerical solution with the evaluation of an exact 
analytical solution given by Carrier and Greenspan.” We consider examples relevant to both 
tsunami and tidal scales. In each of these, agreement between the numerical and exact 
solutions is found to be satisfactory to within about 4 per cent. 

2. FORMULATION 

Rectangular Cartesian axes are used in which the x-axis is directed landward from a point, 
0, situated in the undisturbed level of the free surface. Oz points vertically upwards. The 
equilibrium length of the analysis region is L and there is a sloping shelf above which the 
equilibrium depth decreases linearly from ho at 0 to zero at the undisturbed position of the 
shoreline. The disturbed position of the free surface is at z = {(x, t) .  The usual shallow water 
equations satisfied by 5 and the velocity, u, may then be written 

a5 a -+- [((+ 1 - x)u] = 0 
a t  ax 

a u  au ag 
-+u-+-=o. 
a t  ax ax 

In (1) and(2), the horizontal distance is scaled by L, the time by L/(gh,)”’, the velocity by 
(gho)’/’, and the elevation by ho. 

With this scaling, the elevation is prescribed at x = 0 in the form 

2Tt g = & cos (T), 
where the scaled wave period, T, is related to the dimensional period, T,, by 

The scaled wave amplitude, 8, is related to the dimensional amplitude, a, by 
a 

& =- 
ho. 

(3) 

( 5 )  

As the waves propagate towards the shoreline, we stipulate that the instantaneous position 
of the shoreline corresponds to 

x = 1 + 5(t), (6) 
where 5 represents the scaled inland displacement of the shoreline from its equilibrium 
position. The boundary conditions at the shoreline are the kinematical condition: 

d5 
dt 

u = -  at x = 1 + 5  (7) 

and a statement of zero water depth: 

(={ at x = 1 + < .  (8) 
As shown by Carrier and Greenspan” these equations may, in certain circumstances, 

admit of an oscillatory solution representating a non-breaking standing wave in which the 
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shoreline moves up and down the sloping shelf. With the present notation, it is easy to show 
that 

(9 

where 

1 7  

(Y =(l+l-x)1’2 
P = t + u  

and JO and J1 denote Bessel functions of the first kind. 
The displacement of the shoreline may be deduced from 

* = [ - f u 2 + A c o s ( ~ ) ]  2TP . 
a = O  

The amplitude factor, A, may be fixed in terms of F by linearizing (9) at x = 0 and matching 
the resultant with (3). This yields 

It should be noted that the linearization of (9) at x = 0 is not necessarily an essential part 
of the solution process but is consistent with our subsequent linearization of (2) at x = 0. In 
the numerical procedure, if the spatial variation of u at x = 0 is unknown, the linearization of 
(2) at x = O  will always be necessary and it must therefore be a valid approximation. In the 
example considered here, the non-linear variation of both 5 and u with x and t could in fact 
be computed to any degree of accuracy by use of (9) and (10) and, in consequence, the 
linearization procedure at x = 0 is not strictly necessary. In more general circumstances 
where an analytical solution does not exist, this option is not available and the application of 
the method depends upon the solution for 5 and u at x = 0 being effectively determined by 
linear equations. In the examples considered later, the variation of 5 implied by (9) is indeed 
effectively linear at x = 0 and, on approaching x = 1 + 5, it becomes increasingly distorted by 
non-linearity as described by Carrier and Greenspan? One reason for our method of 
treatment is that it enables us to describe the application of the technique in situations where 
the exact form of spatial and temporal variation of both 1: and u at x = 0 is unknown and 
where the sole input information is that both 5 and u have a sinusoidal variation with t 
corresponding to that given in (3) .  A second reason is because of the considerably simplified 
form of the input conditions, and the ease of application, that results from the linearization 
process. 

In Section 3, we give a numerical method of treating (l), (2), (7) and (8) and subsequently 
describe experiments in which the numerical solution is compared with an evaluation of the 
implicitly defined analytical solution. 
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3. NUMERICAL TECHNIQUE 

We define a new variable, X, by 

so that the shoreline always corresponds to X = 1. With X and t as new independent 
variables, (1) and (2) may be transformed to 

and 

where 

and 

-+-- aF a (UF)=O 
at l+(dX 

F = (1 + ( ) H  
G=(l+()Hu 
H =  1+[-(1+()X 

u=  u-x- .  
dt 

When X =  1, 

Hence, (7) is satisfied by ensuring that 

U = 0  at X = l .  (21) 

Our approach will be to generate an oscillatory solution of (15) and (16) by integrating 
ahead in time from an initial state of rest with an off-shore forcing corresponding to (3). We 
therefore define a discrete sequence of grid-points in the X-space given by 

X = Xi = ( i  - 1) AX; i = 1,2, . . . rn ; AX = l / (m - 1) (22) 

and a discrete sequence of time instants by 

t= t ,=pAt ;  p = O , l ,  . . .  . (23) 

~ ( 4 7  tp) = xP- (24) 

For any variable, x, we write 

The grid-points are staggered and are of two distinct types. When i is odd, we refer to the 
point as a [-point at which F and [ are computed. When i is even, the point is a u-point at 
which G, u and U are computed. Therefore, rn must be even and then corresponds to a 
point at which U = 0 thus satisfying (21). 
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To facilitate the description of the finite-difference equations, we define difference 
operators by 

&x = (XP+I - XP-I)/(2AX) . (25) 
A t x  = (XP" - XPYAt 

ZX = S(XYil+ X:-d (26) 

E,x = xp'l. (27) 

1 
An averaging operation is defined by 

and a shift operator by 

Discretizations of (15) and (16) are based upon a scheme given by Sielecki'' and are derived 
from 

and 

AtG +- 1 &(UXGX) + E, [;* - gi] = 0. 1+5 
Equation (28)  leads to an updating procedure for F at the interior %-points. b may then be 
deduced by applying 

F 
%= -l+(l+<)X+- 

1+5 (30) 

This procedure does not, however, yield the updated value of t at X = 0 which must be 
determined through use of (3). Writing 

p(x, t)  = u +2(1+ t -x)1'2, (31) 
the theory of characteristics discussed by Stoker12 shows that p must be prescribed as a 
function of t at some position x. In the present work, we linearize (31) and prescribe p at 
x = (1 +.$)AX evaluating the known solution for 5 and u at this position by a corresponding 
linearization of (9) and (10). This procedure then yields 

where 

and 

0 =[l-( l+tP)  AXI1'2 (33) 

Again, this linearization is not essential in the present application since the non-linear 
variation of p(x, t )  at x = (1 + 5) AX could be determined as a function of t by use of (9), (10) 
and (11). From this variation, (31) could then be used to compute LS'lin terms of us with the 



258 B. JOHNS 

incorporation of the full non-linearity. As stated earlier, however, the effect of this non- 
linearity is negligible near x = 0 and its inclusion serves no purpose other than to complicate 
the input conditions. Moreover, in more general applications, this option is not available 
since the exact form of both 5 and u is unknown. In these circumstances, our linearization 
technique permits a straightforward application to be made when 8 uh + fh'l  has a prescribed 
sinusoidal variation with t. 

It will be noted that u and 5 are evaluated at the lower time level at which they are 
already known. However, f and T are evaluated at the advanced time level. This, of course, 
introduces a truncation error O(At)  into the numerical solution. The elevation is not 
computed at i = 2 and so we use 

When (35) is combined with (32) it is possible to update f at X = 0 in a way that is consistent 
with (3) and the known linearized form of the solution at the seaward end of the analysis 
region. 

The correspondingly updated value of 5 is then inferred by using (8) and is simply equal to 
fL+'. However, since 1; is not carried at i = rn its value there is determined by linear 
extrapolation from adjacent f;-points. This leads to 

(36) P + l _ l  Pfl - P+l 5 ,  -2(3 Cm-1 f i n - 3 ) .  

These updated values of f may then be used in (16) to update G at the u-points. When (16) 
is applied at i = 2, the non-linear advective term is omitted; this is consistent with the 
linearized form of the boundary condition (32). The updated values of u are found from 

Finally, before proceeding to the next updating cycle, the updated value of U must be 
deduced at the u-points. This is readily determined in terms of known quantities using a 
discrete version of (19) based upon 

EgU = E,u - X A,5. (38) 

4. NUMERICAL EXPERIMENTS 

We take E = 1/500 and T = 1.26. This parameter setting is chosen so that corresponding 
dimensional quantities are L = 50 km, ho = 500 m, Tp = 15 mins and a = 1-0 m. Thus, we 
consider a tsunami scale of oscillation over a steeply sloping continental shelf. The finite- 
difference scheme is applied with m = 100 and At = T/360. It is found that the response is 
essentially oscillatory after 4 complete cycles of integration-thus demonstrating the effec- 
tiveness of (32) in allowing the initial transient response to be radiated across the seaward 
boundary and out of the analysis region. A diagnostic study is made of the 5th cycle of 
integration. In Figure 1, we give the spatial variation of f at t = 0 and t = T/2, the time origin 
now referring to the commencement of the 5th cycle. The numerically computed variation is 
indistinguishable from the exact variation of f as calculated by an iterative procedure applied 
to (9), (10) and (11). As might be expected, the maximum difference occurs in the 
extrapolated values of f at the shoreline. At t=0,  the computed and exact dimensional 
values in metres are respectively -3.92 and -4.09 whereas at t = T/2 they are 4.02 and 4.09 
thus indicating errors of approximately 4 and 2 percent. The accuracy of the numerical 
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Figure 1. Numerically computed spatial variation of 4 at t = 0 and t = T/2 with E = 1/500 and T = 1.26 
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Figure 2. Variation of shoreline displacement during a wave cycle with E = 1/500 and T = 1.26 
Numerical solution 

_ _ _ _ _ _  Exact solution 
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Figure 3 .  As Figure 2 except that E = 11300 and T = 8.07 

solution throughout the wave cycle is most readily appraised by considering the time history 
of the shoreline displacement. This is given in Figure 2 together with an exact evaluation of 5 
determined from (12). From this, we note that the numerical solution underestimates both 
the maximum shoreline recession and the maximum shoreline intrusion. The percentage 
errors are, of course, equivalent to those given for the shoreline elevation. 

In a second example, we take E = 1/300 and T = 8-07. A dimensional equivalent of this 
setting is L = 300 km, ho = 300 m, T, = 12-4 hrs and a = 1-0 m. This therefore corresponds to 
a tidal scale of oscillation in which the wavelength is many times greater than the shelf width. 
In the numerical procedure, we take m = 50 and At = T/496 and, as before, obtain an 
oscillatory response after 4 cycles of integration. The interval 0 S x S 1 + 5 now accommo- 
dates only a fraction of a complete wavelength. Accordingly, a plot of the surface elevation 
will not show the same prominent wave-like characteristics as in the case of tsunamis. In fact, 
the computed and exact values of ( never differ by more than 2 per cent but the effectiveness 
of the numerical scheme is best demonstrated by considering the temporal variation of the 
shoreline displacement. This is the most sensitive indicator of any discrepancy between the 
numerical and exact solution and is given in Figure 3 together with exact evaluation of 5 
determined from (12). It is clear that agreement between the computed and exact value of 
the shoreline displacement is good with regard to both amplitude and phase. 

Our conclusion is that the numerical method described in this paper is an effective way of 
treating the moving shoreline problem for the parameter settings considered. The work 
complements that given by Johns et al.' where a two-dimensional version of the method is 
applied in a storm surge context. In that study, an exact analytical solution does not exist for 
comparison and it is our submission that the present work provides support for the methods 
used in the more general case. 
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